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Abstract

Although several approaches have been
introduced to automatically identify internal log
defects using computed tomography (CT) imagery,
most of these have been feasibility efforts and
consequent y have had several limitations: (1)
reports of classification accuracy are largely
subjective, not statistical, (2) there has been no
attempt to achieve real-time operation, and (3)
texture information has not been used for
segmentation, but has been limited to recognition
procedures. Neural network classifiers based on
local neighborhoods have the potential to greatly
increase computational speed, can be implemented
to incorporate textural features during
segmentation, and can provide an objective
assessment of classification performance. This
paper describes a method in which a multilayer
feed-forward network is used to perform pixel-by-
pixel defect classification. After initial thresholding
to separate wood from background and internal
voids, the classifier labels each pixel of a CT slice
using histogram-normalized values of pixels in a
3x3x3 window about the classified pixel. A post-
processing step then removes some spurious pixel
misclassifications. Our approach is able to identify
bark, knots, decay, splits, and clear wood on several
species of hardwoods. By using normalized pixel
values as inputs to the classifier, the neural network
is able to formulate and apply aggregate features,
such as average and standard deviation, as well as
texture-related features. With appropriate
hardware. the method can operate in real time.

Sawmill operators must confront a
number of drastic changes to traditional ways
of operating their mills. These changes have
been precipitated by expanded markets (both
export and domestic), low-quality raw
material, increased competition from non-
wood products, social pressures to manage
public lands for nontimber resources, and

reduced profit margin between log costs and
lumber prices (Schmoldt 1993).

Consequently, sawmills need to improve their
operations in several ways. They must
consume less raw material while producing an
equivalent amount of final product, and
manufacturing output must be more
consistent and of higher value. This implies
that mill operations must scrutinize carefully
the breakdown of logs into lumber, with the
intent to make that conversion as efficient as
possible. Knowledge of internal log defects,
obtained by scanning, is a critical component
of any such efficiency improvements (Occefia
1991).

Before computed tomography (CT)
scanning or any other type of internal log
scanning can be applied in industrial
operations, there are several hurdles that
must be overcome. First, there needs to be
some way to automatically interpret scan
information so that it can provide the saw
operator with information needed to make
proper sawing decisions. A sequence of x-ray
tomographs cannot be readily synthesized
into a three-dimensional (3D) mental model
by human operators (Schmoldt and others
1993). For the purposes of sawing the log
cylinder into high-value boards, this means
accurately locating, sizing, and labeling
internal defects. Second, this defect
recognition procedure must operate at real
time speeds, so that scanning, image
reconstruction, and image interpretation and
display can be integrated into mill processing.
Third, a 3D display of a log and its defects for
the sawyer is only the first step toward real



efficiency. Eventually, the sawyer must be
guided by computer-analyzed suggestions for
the best log breakdown sequence, or have the
sawing completely controlled by computer
processing (Occefia and others 1995).

The work described here addresses the
first and second of these processing needs.
The next section discusses related work. This
is followed by a detailed description of the
ANN-based classification technique that we
have developed. Following a description of
our experimental methods, performance
results are given, including-a qualitative
comparison with previous approaches. The
final section contains conclusions that we
have drawn from this work, and some
directions for further research.

Previous Work

Because most defects of interest are
internal, a nondestructive sensing technique
is needed which can provide a 3D view of a
log’s interior. Several different sensing
methods have been tried, including nuclear
magnetic resonance (Chang and others 1987,
Chang and others 1989), ultrasound (Han and
Birkeland 1992), and x-ray. Due to its
efficiency, resolution, and widespread
application in medicine, x-ray computed
tomography has received extensive testing for
wood applications (Funt and Bryant 1987,
Hagman and Grundberg 1995, Kenway 1990,
McMillin and others 1982, Portala and
Ciccotelli 1982, Som and others 1992, Taylor
and others 1984, Zhu and others 1991c). As
noted above, however, CT images require
computer analysis before they can be useful in
an industrial setting.

Previous work on automatically labeling
internal log defects has established the
feasibility of utilizing CT images. These
researchers have employed a variety of
methods to segment different regions of a CT
image and then to interpret, or label, those
segmented regions. Often, image
segmentation methods are based on threshold
values derived from image histograms (Funt
and Bryant 1987, Som and others 1992,
Taylor and others 1984, Zhu and others
1991b). Texture-based techniques have been
applied to defect labeling (Funt and Bryant
1987, Zhu and others 1991a). Knowledge-
based classification (Zhu 1993, Zhu and
others 1991d), shape examination (Funt and
Bryant 1987, Som and others 1992), and
morphological operations (Sore and others
1992) have been used to label defects, also.
Hagman and Grundberg (1995) used
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normalized pixel values in a scaled, 8x16
window to label knot types on veneer slices
using either a partial least squares classifier
or an artificial neural network (ANN). While
the latter demonstrates an interesting
approach, the methods employed were
contrived in the sense that objects to be
labeled were pre-selected and-centered in the
analysis window.

In most cases, image analysis has
focused on a single two-dimensional (2D) CT
slice, although neighboring slices have been
used for 3D filtering during preprocessing
steps (Zhu and others 1991b), for multiple-
image operations to detect knots (Sore and
others 1992), and for generating 3D objects
(Zhu 1993).

While previous efforts have demonstrated
feasibility, they have some serious
limitations. First, reports of defect labeling
accuracy are often either anecdotal, based on
success ‘in a training set, or based on a single
test set. No statistically valid estimates of
labeling accuracy can be found in the
literature. Second, there has been no effort to
assess or to achieve real-time operability of
the developed algorithms. Third, texture
information is critical for human
differentiation of regions in CT images (i.e.
image segmentation), and automated
recognition algorithms should exploit this fact
for computer-based processing.

This paper presents an alternative to the
above approaches that has been developed
with these limitations in mind. In contrast to
the previous global approaches that separate
the tasks of segmentation and region labeling,
our approach operates using local pixel
neighborhoods primarily, and combines
segmentation and labeling into a single
classification step. A feed-forward artificial
neural network has been trained to accept CT
values from a small 3D neighborhood about
the target pixel, and then classifies each voxel
as knot, split, bark, decay or clear wood. In
order to accommodate different types of
hardwoods, a histogram-based preprocessing
step normalizes the CT density values prior to
ANN classification. Morphological
postprocessing is used to refine the shapes of
detected image regions. These steps are
described in the next section.

Methods

As shown in Figure 1, an x-ray CT
scanner produces image slices that capture
many details of a log's internal structure. The
slice shown here contains 256 x 256
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elements, each corresponding to a volume of
2.5 x 2.5 x 2.5 mm’. Examples of clear wood
and hardwood defects are indicated in the
figure. Because CT numbers are directly
related to density, CT images vary
dramatically for different species and by
moisture content. Therefore, a log that is
freshly cut will produce different CT values
than one that has had time to dry.

The CT image interpretation system that
has been developed here consists of three
parts: (1) a preprocessing module, (2) a
neural-net based classifier, and (3) a post-
processing module. The preprocessing step
separates wood from background and internal
voids, and normalizes density values. The
classifier labels each non-background pixel of
a CT slice using histogram-normalized values
from a 3x3x3 window about the classified
pixel. Morphological operations are performed
during post-processing to remove spurious
misclassifications.

Figure 1. Different densities are depicted by different gray-
level values in this computer-generated x-ray tomograph of a
red oak log. Regions of clear wood, decay, bark, and splits
are visible. Each pixel is approximately 2.5mm square.

Preprocessing

Background Thresholding

The first objective of preprocessing is to
identify background regions, so that these
regions can be ignored by the classifier. Our
initial approach was to extract histograms for
individual CT slices and apply Otsu’s
thresholding method (Otsu 1979). This

method assumes bimodal histograms, and
minimizes within-group variance. In our
application, it automatically determines a
correct threshold for many CT log images,
because the histograms are typically bimodal.
The two peaks can be found at very low gray-
level values (backaound) and at relatively
high CT values, corresponding to clear wood
and high-densiy areas, such as knots and
bark. Figure 2 illustrates this with a
histogram of densities for the CT slice shown
in Figure 1. In Figure 2, the rightmost
histogram peak represents clear wood and
bark. Knots are denser than clear wood, and
tend to cluster at the right side of this peak
when present. A large peak representing
background is partially shown at the left.

450

Background

Clear Wood

Number of points

CT image value

Figure 2. Histogram of a log section. Background pixels produce
a very large peak, part of which is omitted from the figure to
improve clarity. The t, threshold is obtained using Otsu’s method
directly; t, is obtained after introducing a weighting function to the
histogram.

Unfortunately, one of the defect types—
decay- has density values which are roughly
the average of background (air) and clear
wood density values. This appears as a
small peak in Figure 2, near the midpoint of
the two larger peaks. If Otsu’s method is
applied directly to this histogram, the
threshold indicated by t,is detected.
Unfortunately, this causes decay regions to be
treated as background. We address this
problem by weighting the histogram values,
using the function

w(t)=1-e 1)
where t,is the threshold determined by
applying Otsu’s method initially, and b =
2000. This value for b was chosen
experimentally. The effect of weighting the
histogram is essentially to remove the decay
peak and reduce the size of the clear wood



peak. If Otsu's method is applied to the
resulting histogram, the threshold t,is found,
which successfully distinguishes decay from
background. This method has been tested
using a large number of CT samples. The
weighting function modifies histogram values
only for the purpose of determining a
threshold value for background pixels. The
original pixel CT values are not modified in
this step.

Density Normalization

The second objective of preprocessing is
to normalize CT values, so that the
classification step can work with different
types of wood. Normalization is especially
important because neighborhood pixel values
are used as features by the classifier. If pixel
values are not normalized there will be no
consistent relationships among similar
regions across CT images, and the ANN
classifier will be unable to learn any patterns.

All hardwood CT histograms that we
have examined have the characteristics of the
histogram in Figure 2. That is, there is a
large peak of background pixel values at the
far left, a large peak of clear wood, bark, and
knot pixel values at the far right, and decay
pixel values (if present) located at
approximately the midpoint of the clear wood
values.

To ensure consistency of defect region
values across images, we want to be able to
do several things with any histogram of CT
density values. First, we want to shift the
rightmost peak-containing clear wood, bark,
and knot values—so that these regions always
have the same values and so that the shape
of this peak does not change. Second, we
want the lower CT values, representing
background, to remain about the same
following the transformation, so that zero
values stay near zero. Third, we want the CT
values between the leftmost and rightmost
peaks for each original histogram to have the
same relative position in a transformed
histogram. This type of transformation will
give the important regions of any CT image
the same density values, and allow us to
apply our pixel-value dependent classifier to
those normalized values.

The method used here applies a
transformation to each CT value in the image.
The transformation includes two components
(1) a variable translation component and (2)
normalization by an arbitrary parameter.
The transformation function is given in Eq. 2:
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_x, Hf(x,x,,)(x, —x,,)

X X, )
where
X, transformed CT value
X, original CT value
Xow original CT value of clear wood peak
X, arbitrary translation anchor value, greater

than the CT value of the clearwood peak

f translation multiplier

The translation anchor x,is an arbitrary
parameter selected to be greater than the CT
value of the clear wood peak. The rightmost
histogram peak (including clear wood, knot,
and bark values) will be shifted to the right
by the amount x_-x_,, so that the clear wood
peak is now at x,. The resulting values are
normalized by x_,so that the clear wood peak
of a normalized histogram is always located
at 1. In order for the translation of the
rightmost peak to be consistent for all
histograms it is necessary for the translation
anchor value to be the same for all
histograms. Otherwise, the shape of the
rightmost peak will change with respect to the
range of transformed density values.

The translation multiplier fis a function
of the original CT value x,and is
parameterized by the clear wood peak value
X, It adjusts the amount of the maximum
translation x_-x_,that is added to the original
value x to arrive at x,after normalization by
X,. The actual equation for fis as shown
below, Eg. 3. The function f is sigmoidal and
symmetric about the value x,./ 2 (Figure 3).

fox)=1Ud+e 2 7% @
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Figure 3. The sigmoidal translation mulfiplier function £3), where

Bis the proportion of the ciear wood densily vaiue Xcy. I
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The range of fis 0 £f £1, where (1) the
slope of f is very steep about the inflection
point x.,/ 2; (2) the value of f quickly
approaches 0 at values of x,less than x_/ 2;
and (3) the value of f quickly approaches 1 at
values of x greater than x,/ 2. At x=x./ 2, f
is exactly 1/2. The scale factor adjusts the
steepness of the curve about the inflection
point, i.e. how quickly f rises from 0 to 1 as x,
increases. Larger values of increase the
steepness. Initially we have chosen 10 /x_as
a reasonable value for

If we treat all CT values x,as a
proportion of the clear wood peak value x,,,
i.,e. x,= x, for some then Eq. 3 can be
rewritten as in Eq. 4, assuming =10/ x,,.

f(B) =1/(1+£F) (@)

From equations (2-4), we can observe
that the following transformations will hold
regardless of the original histogram:

x,=1forx,=x,,0rf=1
x,=0forx,=00r =0
x, =05 forx, =x,/20or B=0.5

A Neighborhood-Based Neural-
Net Classifier

A multilayer feed-forward neural network
is used to perform the primary classification
step. There were two initial goals in this

Input Image

research: (1) to determine if the tasks of
segmentation and region labeling could be
combined into a single step and (2) to
determine whether an ANN classifier could
perform well using only simple features
obtained from local neighborhoods. Aside
from the initial background thresholding, both
segmentation and defect labeling are
performed simultaneously by the classifier.
We have found that such a classifier works
quite well, although performance is improved
if information concerning distance from the
center of the log slice is also included. This
distance measure provides contextual
information that aids in classification,
because some entities (such as splits) tend to
lie near log centers and others (such as bark)
lie near the outside edge of the log.

The classifier for a 3x3x3 CT window is
shown in Figure 4. As illustrated in the
figure, each histogram-normalized value in the
neighborhood serves as an input to the ANN.
One additional input is the ‘radius” of the
element under consideration, which is the
distance of this pixel from the centroid of the
foreground region of the CT slice. There are 5
output nodes of the ANN, one for each of the
classes to be detected: knot, split, bark, decay
or clear wood. The class associated with the
output node that has the largest value for a
given input is selected as the classification.

There are two types of split defects that
are present in CT images and that we must
treat differently in order to identify correctly.
The first type of split is one that is wide

Output Image

Neural Network

Figure 4. Several different ANN topologies were frained using histogram normalized pixel values in a 3x3x3 window.
IThe radiai distance of the target pixel fo the center of the iog is included as a feature. I




enough to be imaged as an actual void, which
then can be detected by background
thresholding. The other type of split is a sub-
resolution feature. It is visible in a CT image
as a narrow, linear region of pixels with
values near the low end of the clear wood
values. These splits are narrower than the
size of a pixel, so when a pixel includes such a
split, its CT value represent an average
density for the void and the surrounding
wood. The ANN classifier must be trained to
recognize the texture pattern associated with
such an anomaly in the clear wood region of
an image.

The network was trained using the
conventional back-propagation method
(McClelland and Rumelhart, 1986). Because
network topology has a large impact on
classification accuracy and on convergence
time during training, several topologies were
compared. Networks using one, two, and
three hidden layers were generated, with the
total number of weights for each network
topology kept constant (Nekovei and Sun
1995, Ozkan and others 1993).

At this date, the image interpretation
system has been trained using only two
hardwood species, northern red oak (Quercus
rubra, L.) and water oak (Quercus nigra, L.).
Although these two species are from the same
family of oaks, they are from different
geographic regions and growing conditions.
Training/testing samples were selected from
multiple CT slices. The entire training/testing
set consists of 1973 samples. Ten-fold cross-
validation was used to estimate the true
accuracy rate of the ANN classifier.

In ten-fold cross-validation, the set of all
samples is divided into 10 partitions. At each
stage of the ten-step process, one of the
partitions is reserved for testing, the classifier
is trained on the remain 9 partitions, and
after training is complete the classifier is
tested on the reserved partition. This process
is repeated 10 times; final classification
accuracy for the classifier is the average of the
10 test partitions. Cross-validation provides
an objective and statistically valid estimate of
the true classification rate (Weiss and
Kulikowski 1991).

Postprocessing

Because local neighborhoods are the
primary source of classification features that
are used by the ANN, spurious
misclassifications tend to occur at isolated
points. A post-processing procedure is used to
remove small regions, thereby improving
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overall system performance. This method is
effective since the defects of interest typically
have relatively large sizes in an image. We
chose to use the gray-scale operations of
erosion followed by dilation for this purpose.
A 3x3 structuring element is used for both
operations. An added benefit is that labeled
region borders are smoothed somewhat during
this process.

Results

Several sample histograms are presented
in Figure 5 to illustrate the effect of our
density transformation procedure. Histogram
appearance is invariant under this
transformation, but values of critical regions
are adjusted to be consistent across different
CT images.

Four different ANN topologies were
trained/tested using ten-fold cross-validation.
The results are shown in Table 1. The ANN
with two hidden layers exhibited the best
performance with an accuracy of just over
90%. The next best classifier, with a single
hidden layer of 12 nodes, exhibited practically
the same classification accuracy. Because the
latter network requires much less processing
time, it was chosen as the optimal classifier
among those evaluated. It is interesting to
note that classification performance decreased
slightly as the number of hidden layers
increased.

Table 1. Network Topologies and
Classification Performance

Network Number | Number of Classifi-
topology of training cation

weights iterations accuracy

28-12-5 396 6699 0.898275

28-10-8-5 400 8299 0.902442

28-7-16-5 388 10499 0.869596

28-8-8-8-5 392 60499 0.852903

Experiments using different initial
weights to train the networks indicated that
the choice of initial weights has a negligible
effect on the training process and on the
performance of the classifier. Finally, we
compared this 3D classifier with a similar
ANN which used 2D CT neighborhoods only.
Using only 9 pixels from a 2D neighborhood,
rather than 27 from the corresponding 3D
neighborhood, classification accuracy dropped
from 90% to 84%.
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Figure 5. Three CT image histograms illustrate the effect of ransforming density values. Original CT image histograms

appear on the left and transformed histograms appear on the right. Visually, the histograms do not change, while values for
critical regions become approximately the same. The first and third histograms are oak, and the third is yellow poplar.

The chosen classifier has been applied to
several CT images for illustration. Four
examples of classified log sections are shown
in Figure 6. The first 3 examples were chosen
because they exhibit all of the defects of
interest. The last example was chosen to
demonstrate how the classifier performs on a
species that it was not trained with, in this
case yellow poplar (Liriodendron tulipifera,
L.). As anticipated, the ANN produces some
isolated pixel misclassifications, as shown in
the middle column of the figure. The

classification regions are improved with post-
processing, however, as shown at the right.
In the third example of Figure 6, for example,
the ANN classified partial regions of several
growth rings as split defects; these were
removed by subsequent postprocessing. In
the upper two examples in that figure,
incorrect labels near the outside border of the
CT slices are removed by postprocessing
steps.

Yellow poplar is very different in wood
structure from oak. The classifier was not



trained on any yellow poplar samples.

Despite this, the classifier was able to
distinguish bark and clear wood quite well.
The knot area in the image is difficult to size
correctly because it has CT values very similar
to clear wood. It is not immediately clear
whether we will be able to train the classifier
to make this distinction, even by using yellow
poplar samples.

The image interpretation system is
currently implemented on a Macintosh'
Quadra 650 containing an MC68040/33MHz
processor. Analysis of a single 256x256 CT
slice requires about 25 seconds. This is
considerably faster than the previous
approach (Zhu 1993) which requires 9
minutes of processing time on a VAX 11/785.
Because the algorithms are implemented in C,
however, they can be transported easily to
any other computer hardware.

In comparison to previous hardwood log
inspection systems, our system has a simple
implementation, but high classification speed
and accuracy. Other systems are reported to
be able to successfully identify or locate some
internal defects, but few statistical results are
available. Most previous work is limited to
2D image analysis, which does not make full
use of the 3D nature of CT images. Finally,
most research has dealt with a single type of
wood, whereas our approach successfully
deals with two different wood species.

Conclusions

In general, the ANN classifier, operating
primarily with local, pixel values, is able to
classify regions of CT images with high
accuracy. The resulting classification
performance is 90% accuracy at the pixel level.
Postprocessing improves this value
considerably, but we do not have an exact
numerical estimate for this improvement.
Most regions are detected and correctly
labeled; however, in some cases the classifier
fails to correctly size defects. It is possible
that by the addition of further postprocessing,
e.g., high-level, rule-based analysis of defect
regions, we may be able to size defects more
accurately and to remove any remaining
misclassified regions.

As noted above, the entire classification
operation requires only about 25 seconds on
the current hardware. By using newer RISC-
based hardware, this defect recognition time

‘Tradenames are used for informational purposes only.
No endorsement by the U.S. Department of Agriculture is
implied.
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can be reduced drastically, by a factor of 8-10.
This places defect recognition speed on a par
with scanning and image reconstruction
times. Because each of these 3 operations
takes 2-3 seconds, they can be performed in
parallel on successive slices. As scan i is
being taken, scan i- 1 can undergo
reconstruction, and image i - 2 from scan i - 2
can undergo defect recognition. Therefore, this
defect recognition technique can easily be
implemented in real time as logs are scanned
and images reconstructed.

Our preliminary test of the classifier on a
species for which it was not trained has met
with some success. Generally, bark and clear
wood were classified correctly. Problems
associated with misclassification of knot
areas are due to the unique nature of yellow
poplar knots. That is, knots are very similar
to clear wood density values. Any defect
recognition procedure that uses density values
will necessarily experience difficulty with this
species. We plan to train the classifier
specifically for yellow poplar knots with the
hope that there are textural signatures
unique to these knots that the ANN can
learn.

Because of the success of the trained
ANN classifier on oak samples, we feel
confident that we can develop species-
dependent classifiers that are very accurate.
It is not clear, however, whether we will be
able to create a classifier that is entirely
independent of species. Should a generalized
classifier prove to be infeasible, species-
dependent classifiers can still be useful in
actual mill operations because typically a
single species is sawn over an extended
period. Additional samples of CT images for
other species need to be collected. This will
enable us to verify the efficacy of our density
normalization technique and the ability of our
classifier (or a newly trained classifier) to
correctly label and size internal features of
logs.
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Figure 6. Four log CT images demonstrate defect recognition results. Original CT images appear at the left in each row. The middle
images are ANN classified images, and the rightmost images depict the classification results following postprocessing. The top 3
examples are oak and the bottom example is yellow poplar.
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